4725 Further Pure Mathematics 1

1 (i) $\left(\begin{array}{cc}a-4 & 2 \\ 3 & 0\end{array}\right)$	B1	Two elements correct	
(ii) $4 a-6$	B1	$\mathbf{2}$	Remaining elements correct

8 (i)

$$
x^{2}-y^{2}=5 \text { and } x y=-6
$$

$\pm(3-2 \mathrm{i})$

M1 Attempt to equate real and imaginary parts of $(x+\mathrm{iy})^{2} \& 5-12 \mathrm{i}$
A1 Obtain both results, a.e.f
M1 Obtain quadratic in x^{2} or y^{2}
M1 Solve to obtain $x=(\pm) 3$ or $y=(\pm) 2$
A1 5 Obtain correct answers as complex nos
(ii)

B1ft Circle with centre at their
square root
B1 Circle passing through origin
B1ft $\quad 2^{\text {nd }}$ circle centre correct relative to $1^{\text {st }}$
B1 4 Circle passing through origin
9
9 (i)
i) M
$\operatorname{det} \mathbf{A}=\Delta=6 a-6$
M1 Show correct expansion process for 3×3 or multiply adjoint by \mathbf{A}
M1 \quad Correct evaluation of any 2×2 at any stage
A1 Obtain correct answer
$\mathbf{A}^{-1}=\frac{1}{\Delta}\left(\begin{array}{ccc}3 a-1 & a+1 & -4 \\ 1 & 2 a-1 & -2 \\ -3 & -3 & 6\end{array}\right)$
M1 Show correct process for adjoint entries
A1 Obtain at least 4 correct entries in adjoint
B1 Divide by their determinant
A1 7 Obtain completely correct answer
(ii) $\begin{gathered}\frac{1}{\Delta}\left(\begin{array}{c}5 a-7 \\ 4 a-5 \\ 3\end{array}\right)\end{gathered}$

M1 Attempt product of form $\mathbf{A}^{-1} \mathbf{C}$ or eliminate to get 2 equations and solve

A1A1A1 Obtain correct answer ft all 3

4 S.C. if det now omitted, allow max A2 ft

10 (i)

$$
\mathbf{M}^{2}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right) \quad \mathbf{M}^{3}=\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right) \quad \begin{array}{cl}
\text { B1 } & \text { Correct } \mathbf{M}^{2} \text { seen } \\
\text { M1 } & \begin{array}{l}
\text { Convincing attempt at matrix } \\
\text { multiplication for } \mathbf{M}^{3}
\end{array} \\
& \text { A1 } \mathbf{3}
\end{array} \begin{aligned}
& \text { Obtain correct answer }
\end{aligned}
$$

(ii) $\quad \mathbf{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

B1ft 1 State correct form, consistent with (i)

10 (iii) \begin{tabular}{lll}

M1 \& | Correct attempt to multiply \mathbf{M} \& \mathbf{M}^{k} |
| :--- |
| or v.v. |

\& A1 \& | Obtain element $2(k+1)$ |
| :--- |
| Clear statement of induction step, from |
| correct working |

A1
\end{tabular}

